2 minute read

The fourth measure of optimality we shall consider is \(T\)-optimality. This is where we seek to calculate the geometric mean of the eigenvalues of the information matrix.

Definition 1: Geometric Mean

Given a dataset \(\left\{x_1, x_2, \ldots, x_N \right\}\), the geometric mean is given by:

\[\text{Geometric mean} = \left( \prod_{i=1}^{N} x_i \right)^{\frac{1}{N}}\]

where \(N\) is the number of points in your dataset.

We shall now calculate the eigenvalues of the information matrix and apply the above definition to provide a definition for the \(T\)-optimality. If you recall from our section on regression, we claimed that the variance of an estimator is a measure of its precision. We also established a formula for the variance of the regression coefficients, \(\boldsymbol{\hat{\beta}}\) using the design matrix, \(\mathbf{F}\):

\[\text{Var}(\boldsymbol{\hat{\beta}}) = \sigma^2 \left(\mathbf{F}^T \mathbf{F}\right)^{-1}\]

where the design matrix is given by

\[\mathbf{F} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}\]

Therefore, our Fisher information matrix becomes:

\[\begin{align} \mathbf{I} &= \mathbf{F}^T \mathbf{F} \\ \\ & = \begin{pmatrix} 1 & 1 & 1 & \ldots & 1\\ x_1 & x_2 & x_3 & \ldots & x_n \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \\ \\ &= \begin{pmatrix} n & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 \end{pmatrix} \end{align}\]

Now, let us compute the eigenvalues of this matrix. We first start by forming the characteristic polynomial (i.e., \(\text{det}\left[\mathbf{I} - \lambda\mathbb{1}\right]=0\)):

\[\text{det}\left[\mathbf{I} - \lambda\mathbb{1}\right] = \begin{vmatrix} n - \lambda & \sum_{i=1}^{n} x_i \\ \sum_{i=1}^{n} x_i & \sum_{i=1}^{n} x_i^2 - \lambda \end{vmatrix} =^! 0\]

Now, let’s solve this equation for lambda:

\[\begin{align} 0 &= (n - \lambda)\left(\sum_{i=1}^{n} x_i^2 - \lambda\right) - \left(\sum_{i=1}^{n} x_i\right)^2 \\ \\ &= \lambda^2 - \lambda \left(n + \sum_{i=1}^{n} x_i^2 \right) + n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2 \\ \\ \end{align}\]

Notice that this is a quadratic equation. As such, we can use the quadratic formula to evaluate:

\[\lambda_{\pm} = \frac{\left(n + \sum_{i=1}^{n} x_i^2\right) \pm \sqrt{(n + \sum_{i=1}^{n} x_i^2)^2 - 4\left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)}}{2}\]

Therefore, in the case of the linear model, we have two eigenvalues:

\[\begin{align} \lambda_{+} &= \frac{\left(n + \sum_{i=1}^{n} x_i^2\right) + \sqrt{(n + \sum_{i=1}^{n} x_i^2)^2 - 4\left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)}}{2} \\ \\ \lambda_{-} &= \frac{\left(n + \sum_{i=1}^{n} x_i^2\right) - \sqrt{(n + \sum_{i=1}^{n} x_i^2)^2 - 4\left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)}}{2} \end{align}\]

Now, we shall compute the geometric mean. We must first compute the product of these two eigenvalues:

\[\begin{align} \lambda_+ \cdot \lambda_- &= \left( \frac{n + \sum_{i=1}^{n} x_i^2 + \sqrt{(n + \sum_{i=1}^{n} x_i^2)^2 - 4\left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)}}{2} \right) \\ \\ & \ \ \times \left( \frac{n + \sum_{i=1}^{n} x_i^2 - \sqrt{(n + \sum_{i=1}^{n} x_i^2)^2 - 4\left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)}}{2} \right) \\ \\ &= \frac{\left(n + \sum_{i=1}^{n} x_i^2\right)^2 - \left((n + \sum_{i=1}^{n} x_i^2)^2 - 4\left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)\right)}{4} \\ \\ &= \frac{4\left(n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2\right)}{4} \\ \\ &= n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2 \end{align}\]

Let’s use Definition 1 to finalise our calculation of the geometric mean of the eigenvalues of the information matrix:

\[\begin{align} \text{Geometric mean} &= \sqrt{\lambda_+ \cdot \lambda_-} \\ \\ &= \sqrt{ n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \end{align}\]

\(T\)-optimality seeks to maximise the geometric mean of all eigenvalues; the precision of the estimators very much depends on your choice of design points, \(\left\{x_i\right\}\), and the number of design points in your experiment, \(n\).

Tags:

Updated: